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A B S T R A C T

Purpose: The Mayo-Baylor RIGHT 10K Study enabled preemptive, sequence-based

pharmacogenomics (PGx)-driven drug prescribing practices in routine clinical care within a

large cohort. We also generated the tools and resources necessary for clinical PGx

implementation and identified challenges that need to be overcome. Furthermore, we

measured the frequency of both common genetic variation for which clinical guidelines

already exist and rare variation that could be detected by DNA sequencing, rather than

genotyping.

Methods: Targeted oligonucleotide-capture sequencing of 77 pharmacogenes was performed

using DNA from 10,077 consented Mayo Clinic Biobank volunteers. The resulting predicted

drug response–related phenotypes for 13 genes, including CYP2D6 and HLA, affecting 21

drug–gene pairs, were deposited preemptively in the Mayo electronic health record.

Results: For the 13 pharmacogenes of interest, the genomes of 79% of participants carried

clinically actionable variants in 3 or more genes, and DNA sequencing identified an average of

3.3 additional conservatively predicted deleterious variants that would not have been evident

using genotyping.

Conclusion: Implementation of preemptive rather than reactive and sequence-based rather than

genotype-based PGx prescribing revealed nearly universal patient applicability and required

integrated institution-wide resources to fully realize individualized drug therapy and to show

more efficient use of health care resources.

© 2022 American College of Medical Genetics and Genomics.

Published by Elsevier Inc. All rights reserved.

Introduction

Pharmacogenomics (PGx) is the study of genetically deter-

mined variation in individual response to drugs.1-3 PGx var-

iants may affect either pharmacokinetics, processes such as

drug metabolism or transport that influence the concentration

of a drug reaching its target, or pharmacodynamics, variation

in the target itself or processes downstream of the target.1,2

Although many DNA sequences are known to influence

drug response,1-3 PGx has not yet achieved broad clinical

implementation. More recently, there have been multiple ef-

forts to move toward that goal, from studies conducted by
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single institutions4 to those involving multiple institutions

and multiple countries such as the Ubiquitous Pharmacoge-

nomics Consortium that extends across the European com-

munity.5 There are numerous reasons for this slow pace of

implementation, including a requirement to educate pro-

viders, limited insurance reimbursement in the United States,

and a relative lack of prospective comparisons of preemptive

test results vs reactive testing.

Numerous entities such as the Pharmacogenetics Knowl-

edgebase (PharmGKB)6 and Pharmacogene Variation Con-

sortium (PharmVar)7 have been established to serve as

database repositories to collect PGx variants and provide

underlying information, including allele frequencies, meta-

bolic pathways, and the strength of associations between

variants and clinical effects. Further resources, including the

Clinical Pharmacogenetic Implementation Consortium

(CPIC),8 the Dutch Pharmacogenetic Working Group

(DPWG),9 and others, are dedicated to the establishment of

peer-reviewed clinical dosing guidelines based on diplotype-

driven predictions of resulting drug response phenotypes.

Various government entities such as the US Food and Drug

Administration (FDA)10 both publish dosing guidelines and

exercise regulatory authority over testing and return of re-

sults. All of these databases catalog genomic variants that are

relatively common, where there is sufficient data to support

statistically robust conclusions as to their effect. However,

over the past decade, it has been shown that rare variants are

both greater in number and often show larger effect sizes than

many common variants.11 A number of studies aimed at

genes known to be involved in PGx also show that both

common and rare variants are prevalent and influence clinical

outcomes and that variants and allele frequencies vary across

populations, suggesting that individual use of these data

might have a broad and significant effect on drug prescribing

practices worldwide.

A number of health care systems have begun to integrate

alerts for PGx drug–gene pairs into their electronic health

records (EHRs).12-14 Those alerts have sometimes been

designed to inform the prescriber of the availability of PGx

testing for the drug being prescribed, as is the case at the

Mayo Clinic for a subset of drug–gene pairs (Table 1).

However, this reactive approach requires that the prescriber

order the PGx test and then wait for the result, a delay that

could be avoided if genomic information for that patient had

already been deposited in the EHR. Ideally, a preemptive test

would integrate PGx seamlessly into the clinical workflow,

would only fire alerts for patients whose genomes carry the

variant(s) of interest, would avoid delays in the initiation of

drug therapy, and would provide the prescriber with infor-

mation for all sequence variants in the gene(s) of interest

rather than merely a small number of commonly genotyped

single nucleotide variants (SNVs) or structural variants such

as insertions or deletions and copy number variants.

As a feasibility test and to identify challenges associated

with the application of this approach to the clinical imple-

mentation of PGx guidance and—eventually—as a tool to

study the clinical utility and economic benefit of preemptive

sequence-based PGx, the Mayo Clinic and the Baylor Col-

lege of Medicine Human Genome Sequencing Center (BCM-

HGSC) collaborated to generate DNA sequence data for 77

known or candidate pharmacogenes using a capture panel

and DNA from 10,077 patients who received their health care

from the Mayo Clinic. Specifically, drug response pheno-

types predicted for gene variants included in drug–gene pairs

for which alerts currently fire at the Mayo Clinic, were

deposited in the EHR to determine whether preemptive

sequence-based PGx testing might represent a step toward

the broader incorporation of this aspect of clinical genomics

into patient care. The DNA sequence information was

generated under College of American Pathologists (CAP)

and Clinical Laboratory Improvement Amendments (CLIA)

standards. This effort was also designed to make it possible to

stimulate PGx research studies by taking advantage of clin-

ical drug response information present in the Mayo Clinic

EHR. Table 1 lists the 21 drug–gene pairs for which PGx

alerts fired across the Mayo Clinic system during the study as

well as the year of their implementation. The 77 pharmaco-

genes that were sequenced for this study are listed in Table 2,

with genes highlighted for which gene-related predicted

phenotype status (eg, poor metabolizer) were deposited pre-

emptively in the EHR. We chose to clinically implement the

data for only those drug–gene pairs that had already under-

gone rigorous internal peer review for clinical utility—as

described subsequently in the Materials and Methods—with

the remaining genes being available for inclusion in future

research studies to assess their potential clinical utility. The

Mayo-Baylor RIGHT 10K Study also made it possible to

identify significant institutional infrastructural and educa-

tional challenges associated with the implementation of this

important aspect of clinical genomics.

Materials and Methods

Study participants

The 10,077 Mayo-Baylor RIGHT 10K Study participants

were volunteers who had donated biospecimens and health

information to the Mayo Clinic Biobank for research pur-

poses. Details regarding the design of the study have been

described elsewhere.15 Demographic information for the

study cohort is provided in Table 3.

DNA sequencing

Blood was collected and genomic DNA was extracted at the

Mayo Clinic for target-enriched capture sequencing at the

BCM-HGSC Clinical Laboratory. A new PGx capture re-

agent (PGx-seq) was designed, constructed, and validated to

CAP-CLIA standards for clinical testing. This reagent tar-

geted a combination of complete coding sequences for 77

pharmacogenes and variants present on both the Affymetrix

DMET Plus (Affymetrix/Thermo Fisher Scientific) and
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Illumina VeraCode ADME (Illumina) array genotyping

platforms not already addressed by the capture, together with

supplementary known PGx and fingerprinting SNVs, as well

as regional capture of the CYP2D6 locus that incorporated

both of its nearby pseudogenes. In the development of both

gene targets and software analysis, a previously characterized

cohort of 512 samples was used to validate performance.

Those analyses suggested that tag SNVs designed to identify

the 4 HLA region allele-types of interest underperformed for

1 allele-type and therefore, Omixon HLA Explore software

(Omixon Biocomputing Ltd) was tested and adopted for

these loci. For CYP2D6, a software solution designed to

identify structural and copy number variants was developed

by the Mayo Clinic Personalized Genomics Laboratory

(PGL) and implemented for these samples. The resulting

average sample sequencing depth was greater than 490. See

Supplemental Methods for further details.

Drug–gene pair alerts and clinical decision support

The Mayo Clinic Pharmacogenomics Task Force selected

the drug–gene pair alert rules on the basis of peer-reviewed

published guidelines from CPIC, the Dutch Pharmacoge-

netic Working Group, the Pharmacogenetics Knowledge-

base, and the FDA as well as advice from intramural clinical

specialists. This Task Force also developed the clinical de-

cision support tools required to translate PGx assay results

into EHR alerts.

Information technology

The BCM-HGSC and the Mayo Clinic PGL collaborated to

identify and 'force call' (override variant caller software to

return a locus-specific genotype regardless of conflict with

the human reference) 310 potential variant sites defining

currently known actionable alleles and developed translation

lookup tables specifying drug response–related predicted

phenotypes for all reportable genes except CYP2D6. For this

gene, software developed in the Mayo Clinic PGL,

CNVAR, was used to determine final CYP2D6 predicted

phenotypes or, in rare cases, to refer samples for further

testing and/or manual review. Software at Baylor was used

to filter the Omixon software output to identify relevant

HLA allele-types. Further scripts and modifications of

existing data pipelines specific to the project were imple-

mented at both institutions. See Supplemental Methods for

further detail.

Results

Introduction

The Mayo-Baylor RIGHT 10K Study was designed to test

the long-term hypothesis that ready access at the point-of-

care to prescribing recommendations on the basis of a pa-

tient’s genetic composition would help to optimize that

individual’s prescription drug therapy both short and long-

term. We also sought to assess the rate of occurrence of

rare variants within the PGx genes of participants and the

added value of using DNA sequencing, rather than geno-

typing, for clinical testing. We anticipated that increases in

drug efficacy and reduction in the rate of adverse events

would result in better patient outcomes and enhanced health

care economics as we accumulate cohort outcomes data

moving forward. The clinicians caring for the 10,077 par-

ticipants in the study, predominately primary care physi-

cians, had not ordered PGx testing, and therefore,

educational programs had to be designed for all health care

team members as well as processes for the return of PGx

results to both the health care team and to participating

subjects.

Table 1 Drug–gene pair alerts implemented in the Mayo Clinic

EHR by year of implementation

Drug Gene(s) Year implemented

Abacavir HLA-B*57:01 2013

Azathioprine TPMT and NUDT15a 2013

Carbamazepine HLA-B*15:02 and

HLA-A*31:01b
2013

Codeine CYP2D6 2013

Mercaptopurine TPMT and NUDT15a 2013

Tamoxifen CYP2D6 2013

Thioguanine TPMT and NUDT15a 2013

Tramadol CYP2D6 2013

Allopurinol HLA-B*58:01 2014

Clopidogrel CYP2C19 2014

Simvastatin SLCO1B1 2014

Warfarin CYP2C9 and VKORC1 2014

Citalopram CYP2C19 2015

Escitalopram CYP2C19 2015

Fluvoxamine CYP2D6 2015

Fluoxetine CYP2D6 2015

Paroxetine CYP2D6 2015

Venlafaxine CYP2D6 2015

Tacrolimus CYP3A5 2016

Capecitabine DPYD 2017

Fluorouracil DPYD 2017

A subset of these alerts were designed to fire in a reactive fashion, ie,

recommending PGx testing in response to all initial prescriptions, which are

as follows: TPMT and NUDT15 for thiopurines (mercaptopurine, azathio-

prine, and thioguanine), HLA-B*57:01 for abacavir, HLA-B*15:02 and HLA-

A*31:01 for carbamazepine in patients of Asian descent, HLA-B*58:01 for

allopurinol in patients of Asian or African decent, and CYP2D6 for tamox-

ifen. This was done to avoid physician alert fatigue that might have

occurred if all of the alerts had been reactive. All other alerts currently fire

only for patients who already have PGx information in the EHR. Between

March 2015 and December 2018, these alerts fired a total of 6620 times. No

comparable data are available after December 2018 because of Mayo

Clinic’s implementation of a new EHR.

EHR, electronic health record; PGx, pharmacogenomics.
aNUDT15 added in 2018 and assayed by genotyping.
bHLA-A*31:01 added in 2018.
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Study participant PGx DNA variants

Targeted DNA sequencing for the 10,077 participants in the

study, as anticipated, identified a large number of currently

clinically actionable PGx variants as well as currently un-

classified rare variants in the genomes of every patient

(Table 4)—for all 77 genes and for the 13 genes for which

alerts fired in the Mayo Clinic EHR during the study. The

targeted genomic regions of all but 55 of the 10,077 par-

ticipants included a clinically actionable variant in at least 1

of the 13 pharmacogenes included in the 21 drug–gene pair

alerts (Table 1), whereas 79% of the participants had clini-

cally actionable variants in 3 or more of those 13 genes, as

depicted graphically in Figure 1. Therefore, all but 0.6% of

the participants, depending on the drugs prescribed by their

clinician, would potentially have benefited from PGx in-

formation for just these 13 pharmacogenes.

Sequencing vs genotyping

We chose a targeted DNA sequence–based assay for this

project to ensure that we tested all target genes compre-

hensively. The alternative DNA genotyping arrays currently

available are, of necessity, designed to only detect variants

that have been previously identified. Consequently, avail-

able arrays generally represent relatively more common

variation and, conversely, fail to represent less common

genomic variants, which could—in aggregate—have sig-

nificant clinical relevance.16

As a proxy for a comparison with the collection of var-

iants available on arrays, we filtered our DNA sequence

results to remove common variants already categorized by

CPIC as clinically actionable (Table 4). After filtering, on

average, each participant carried 127 additional SNVs and

insertions or deletions variants for the 13 genes listed in

Table 1. Computer analysis (eg, Combined Annotation

Dependent Depletion [CADD] and Sorting Intolerant From

Tolerant [SIFT]) scores17,18 identified an average of 7.3 and

8.0 CADD and SIFT variants, respectively, and 3.3 variants

when intersected in each participant as probably deleterious,

suggesting a potential clinical impact. A recent report of

functional testing by deep mutational scanning in a separate

cohort, combined with functional validation of the results,

found that 19 of 109 CYP2C9 and 36 of 121 CYP2C19

variants that had been identified by sequencing the genomes

of large populations displayed severely damaging pheno-

types with protein expression that was <25% of that present

for wild-type alleles.19 CYP2C9 and CYP2C19 are phar-

macogenes that play important roles in variable clinical

response to drugs that include warfarin, clopidogrel, and a

number of psychiatric drugs. In total, 6 of the subjects

included in this study carried functionally severely

damaging variants in CYP2C9 other than those that are

usually genotyped, whereas the genome of 1 subject carried

2 such variants. The genomes of 25 of our participants

included 1 functionally severely damaging variant in their

CYP2C19 gene beyond those that are usually genotyped,

whereas 1 subject carried 2 such variants. All of these cases

would have been missed if only standard genotyping

methods had been applied. Variants and alleles with un-

known function were evaluated using a modification of

American College of Medical Genetics and Genomics

variant interpretation criteria. Predicted phenotypes for

variants of uncertain significance were expressed as a range

(Supplemental Methods).20

Application to current therapy

As a first step toward implementation, clinicians caring for

patients who were already prescribed medications influ-

enced by variants in genes included in the Mayo Clinic

drug–gene pair alerts were informed whenever these initial

results suggested that a patient’s drug therapy could

potentially be improved by dose adjustment or alternative

therapy. If Mayo Clinic pharmacists concluded that the PGx

test results indicated either a semiurgent (ie, the drug had the

potential to cause serious harm) or a clinically actionable (ie,

the drug had the potential to cause an adverse reaction or

Table 2 Lists of 77 pharmacogenes that were sequenced for the Mayo-Baylor RIGHT 10K Study

ABCB1 CYP2B6 DPYD GSTP1 KCNH2 RYR2 SULT1A1

ABCC4 CYP2C8 DRD2 HLA-A (*31:01) KIF6 SCN1A TP53

ABCG2 CYP2C9 DRD3 HLA-B (*15:02, *57:01, *58:01) LDLR SCN5A TPMT
ADRB2 CYP2C19 DRD4 HMGCR LEP SLC19A1 TYMS

ANKK1 CYP2D6 EGFR HNF1A LEPR SLC22A1 UGT1A1
CES1 CYP2E1 F5 HNF4A MTHFR SLC22A2 UGT1A3-10 exon1a

CFTR CYP2J2 FAAH HTR2A NAT2 SLC6A4 UGT2B15

COMT CYP3A4 G6PD HTR2C OPRM1 SLCO1B1 UGT2B7

CYP1A2 CYP3A5 GGCX IFNL3 (IL28B) PON1 SLCO2B1 VEGFA

CYP2A6 CYP4F2 GRIK4 IGFBP7 RYR1 SOD2 VKORC1

The boldfaced genes symbols are those for which predicted drug metabolism–drug response phenotype data were deposited in the Mayo Clinic EHR for

RIGHT 10K subjects.

EHR, electronic health record.
aPlease note that multiple UGT1 splice isoforms have been included and that results for CYP1A2, CYP3A4, and UGT1A1 were deposited to the EHR but are not

yet part of drug–gene pair alerts at the Mayo Clinic.
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significantly altered efficacy) need to inform the prescriber,

e-consults were sent to the primary care provider. Semi-

urgent e-consults were sent for 61 patients. The drugs

involved were clopidogrel for 41 of the 61 patients (67%),

citalopram for 9 of the 61 patients (15%), escitalopram for 7

of the 61 patients (11%), tramadol for 2 of the 61 patients

(3%), fluorouracil for 1 of the 61 patients (2%), and allo-

purinol for 1 of the 61 patients (2%). Providers for those

patients accepted 54% of the pharmacists’ semiurgent

e-consult recommendations. Viewed more globally, a total

of 2782 clinically actionable e-consults were sent out to

providers on the basis of the RIGHT 10K sequencing

data—a figure that begins to provide insight into the po-

tential benefit if PGx information had been available at the

time that medications for those patients had initially been

prescribed. Obviously, most of these patients had been on

their current therapy regimen for some time, and therefore,

their drug therapy might have already been altered in

response to either the occurrence of an adverse reaction or

lack of efficacy. In addition, the Mayo Clinic has begun

collecting evidence of improvement in outcomes traced to

the application of the RIGHT 10K results to participant

clinical care. Among the several examples in psychiatric

patients, 1 participant, found to be a CYP2C19 ultrarapid

metabolizer, was switched from an ineffective combination

of escitalopram supplemented with bupropion to bupropion

monotherapy and is now reported to be in full remission

from major depressive disorder. In another example, a

participant on combination therapy was found to be a

CYP2D6 poor to intermediate metabolizer, resulting in the

recommendation that tramadol be replaced or eliminated,

resulting in the alleviation of associated dizziness.

Pharmacists and PGx implementation

We found that a team-based approach entailing the involve-

ment of PGx-trained pharmacists, information technology

(IT) support for the development of decision support rules and

alerts, and effective PGx education programs were all

required for the success of this implementation effort. Spe-

cifically, the development of PGx test reports that were easily

understood by clinicians was essential, along with ensuring

that clinicians had access to those reports before they got

displayed in patient portals. TheMayoClinic’sDepartment of

Pharmacy played a key role in many of these processes, but

initial expertise in PGx among pharmacists was highly vari-

able. Therefore, a train-the-trainer model21 was applied to

ensure that most pharmacists across theMayoClinic had been

trained in PGx, with early adopters serving as trainers for their

colleagues. The Department also established an electronic

consultation and recommendation process (the e-consults

referred to earlier) to provide patient-specific PGx guidance to

providers. Those efforts resulted in a total of 392 of Mayo’s

452Minnesota licensed pharmacists being trained in PGx, the

fact that the Mayo Rochester Pharmacy now includes 3 full-

time–PGx specialists, the establishment of an annual Phar-

macogenomics Workshop that rotates among the 3 major

Mayo Clinic campuses in Minnesota, Florida, and Arizona, a

post-graduate year 2 residency training program in Pharma-

cogenomics forDoctor of Pharmacy graduates, and the launch

of an online PGx Certificate Program.

PGx education for medical staff

Previous studies have reported that clinicians often report

that lack of education is a major factor limiting their ability

to use PGx clinically.22-25 To help address this challenge,

multidisciplinary PGx educational content was developed

for both practitioners26 and pharmacists as outlined earlier.

Furthermore, critical components of this content were

incorporated into AskMayoExpert, an institutional online

knowledge resource that provides Mayo clinicians with

point-of-care information on a wide variety of clinical

topics. A direct link to the appropriate AskMayoExpert PGx

topic was integrated into each EHR drug–gene pair alert

Table 3 Characteristics of the RIGHT 10K participants

Characteristic n (%) N = 10,077

Sex

Female 6146 (61.0)

Male 3931 (39.0)

Age on January 1, 2016, y

18-24 58 (0.6)

25-34 647 (6.4)

35-44 824 (8.2)

45-54 1299 (12.9)

55-64 2067 (20.5)

65-74 3215 (31.9)

75+ 1967 (19.5)

Race

White 9475 (94.0)

Non-White 523 (5.2)

Black 50

Asian 91

AIAN 16

NHPI 0

Other and mixed 366

Unknown 79 (0.8)

Ethnicity

Non-Hispanic 9959 (98.8)

Hispanic 112 (1.1)

Unknown 6 (0.1)

Self-reported education at time of

Biobank Consent (2009-2017)

High school graduate or GED or less 1261 (12.5)

Some college or associates degree

(including community college)

2935 (29.1)

Four-year college graduate

(Bachelor’s degree)

1991 (19.8)

Graduate or professional school 3845 (38.2)

Unknown 45 (0.4)

AIAN, American Indian or Alaska Native; GED, General Educational

Development; NHPI, Native Hawaiian or Pacific Islander.
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together with information on both alternative medications

and reference to Mayo Clinic experts who could provide

assistance. Finally, case-based education for pharmacists,

nurses, and other providers was also developed.

RIGHT 10K Study and PGx research

The RIGHT 10K Study also provided a broad foundation for

PGx discovery. The availability of DNA sequence information

for 77 pharmacogenes joined with clinical data in the EHR

created anunusual opportunity for PGx research. The sequence

data were made available to Mayo Clinic investigators on the

basis of the submission of a short research protocol that un-

derwent Institutional ReviewBoard and scientific peer review.

We have approved 30 protocols that address PGx across a

broad spectrum of drug therapies (Supplemental Table 1). An

unforeseen bonus of this approach to access has been the fact

that the investigators leading those 30 studies have often

become both experts in and advocates for PGx within their

individual clinical departments and divisions—a development

that has assisted with the clinical acceptance and use of PGx at

the Mayo Clinic.

PGx 10K participant survey

A survey designed to query knowledge of and attitudes to-

ward PGx was sent to half of the RIGHT 10K Study partici-

pants, and 4624 (92.8%) of the invited participants returned

Table 4 The total and average number of SNVs/indels in the sequenced samples (N = 10,077)

All Calls Deleterious Callsa: CADD/SIFTb/Intersection

Total Counts Novel Counts Total Counts Novel Counts

SNVs

Number of SNVs 10,205,546 9,997316 462,915/360,310/190,311 426,384/346,108/176,148

SNVs/sample 1012.8 992.1 45.9/35.8/18.9 42.3/34.4/17.5

Number of SNVs 1,388,855 1,219,760 93,875/92,352/44,614 73,987/80,835/33,136

SNVs/sample 137.8 121.0 9.3/9.2/4.4 7.3/8.0/3.3

Indels

Number of indels 620,215 576,068 11,749/0/0 1697/0/0

Indels/sample 61.6 57.2 1.2/0/0 0.2/0/0

Number of indels 69,787 56,346 5509/0/0 0/0/0

Indels/sample 6.9 5.6 0.6/0/0 0/0/0

CADD, Combined Annotation Dependent Depletion; CPIC, Clinical Pharmacogenetic Implementation Consortium; Indel, insertion or deletion; SIFT, Sorting

Intolerant From Tolerant; SNV, single nucleotide variation.
aNovel counts are total SNV/Indel variant counts excluding those included in the 133 CPIC actionable variants included in the Mayo drug–gene pair alerts

along with stop gain, stop loss, and frameshift variants. For this analysis, deleterious has been defined as having CADD score > 2017 and/or SIFT score

< 0.05.18

bSIFT output is limited to frameshift/nonframeshift for indels.

Figure 1 Percentage of study subjects harboring clinically actionable PGx variants. The figure shows the number of genes that

contained clinically actionable genomic variants for the 13 genes included in the drug–gene pair alerts listed in Table 1 that were observed in

each of the 10,077 RIGHT 10K Study subjects and the percentage of study subjects included in each group. A. The pie chart shows these data

graphically, whereas the table in (B.) lists the information upon which the pie chart is based.

L. Wang et al. 1067



the survey. The survey was sent to participants after they had

been consented but before they had received their PGx results.

Respondents felt that PGx results would help them avoid

exposure to medications that might be harmful (Quite Valu-

able to Extremely Valuable, 94.6%), but relatively few

(<18%) expected that their prescription medications or dos-

ages would have to be changed on the basis of the PGx results.

In addition, respondents reported low levels of concern

regarding potential disruption of their ongoing care and 76%

had no or few concerns about the ability of their physician to

integrate those results into their care. A follow-up survey is

planned after all participants have had an opportunity to

discuss the PGx results with their care givers.

Discussion

PGx has long represented one of themost compelling avenues

toward bringing DNA-based individualized medicine to

clinical care.1-3Variability in response to medication has long

been observed and expected among both providers and pa-

tients, and genetic variability underlying this phenomenon is

common. Although a small number of mainly academic

medical centers have adopted limited PGx testing protocols

and momentum is slowing building within a number of pro-

vider networks, broad implementation remains slow for

several reasons. These include lack of overall knowledge of

the topic and therefore, acceptance among medical providers

at all levels; challenges in translating test results to dosing

recommendations in patients’ EHRs while not interrupting

the clinical workflow; and in the United States, in particular, a

reluctance by both private insurance and government entities

to reimburse the relatively minor cost involved in testing.

The Mayo-Baylor RIGHT 10K Study represents a sys-

tematic effort to integrate preemptive DNA sequence–based

PGx panel testing into clinical workflows across a large

medical center incorporating a large cohort of patients. This

study both builds on previous work and addresses chal-

lenges not generally taken on by others. As suggested by

previous analyses of both the 1000 Genomes Project27 and,

more recently, the UK Biobank28 and anticipated in this

study, we found that nearly all of the 10,077 study partici-

pants could potentially have benefited from preemptive PGx

data and its attendant interpretation deposited in the

EHR—depending on the drugs that their clinician might

prescribe. Of importance, we chose to apply targeted DNA

sequencing rather than genotyping to allow us to capture

less common genomic variants that could by themselves, or

in combination, have significant clinical relevance and did

so at a cost that barely exceeded the cost of genotyping. We

found that the average patient harbored at least 3 current

clinically actionable variants, and a conservatively estimated

3 more variants deemed probably deleterious for only the 13

genes included in our study. The utility of the sequence data

was further confirmed by the observation that 55 of 230

variants that we observed in the sequence data for CYP2C9

and CYP2C19 were recently classified as functionally

significant,19 although they are unlikely to be assayed using

currently available genotyping arrays. While the remaining

variants are currently classified as variants of uncertain

significance, ongoing functional testing is likely to provide

reclassification for some of those variants in the future.

Clinical testing by sequencing, rather than via genotyping

arrays, ensures that as a variant is reclassified, individuals

can be informed of those results without the need for repeat

testing with new reagents. We acknowledge a geographi-

cally driven bias in our cohort as reflected in the Northern

European inheritance present for the vast majority of our

samples (94%). As a result, we would anticipate that our

data for uncharacterized variant frequency represents a

lower boundary when these tools are applied to more

diverse populations, as outlined by others.28

Our study developed both reagents and data analysis

software tools that allowed the successful assay and

reporting of predicted phenotypes across 2 important but

highly polymorphic and difficult assay targets, CYP2D6 and

the human HLA region. The former is known to be involved

in the metabolism or processing of up to 25% of all drugs

currently marketed and the latter is known to be involved in

several of the most serious adverse event episodes observed

to date. There is little doubt that these loci will continue to

play major roles in PGx going forward.

The RIGHT 10K Study also served to highlight a series of

challenges associated with the clinical implementation of

PGx. For example, we revealed the need to identify health

care team interpreters, a role played in this study by Mayo

Clinic pharmacists, to act as a conduit between the data,

physicians, and patients. In addition, there was a critical need

for IT support to build and implement the data pipelines that

enable the identification of multiple DNA variant types and

the translation of diplotypes to alleles as well as clinical de-

cision support software that integrates smoothly with EHR

packages. We also learned where needs existed and devel-

oped solutions within Mayo’s educational infrastructure.

Approaches to address these challenges will differ depending

on the local environment of individual medical institutions or

provider networks, but having professional staff who can play

the interpretive, evaluative, and educational role taken on by

the Mayo Clinic pharmacists, such as physicians assistants,

nurse practitioners, or genetic counselors in other health care

institutional settings, plus the availability of clinical decision

support tools, will be required to deliver PGx information to

clinical staff quickly, clearly, and without requiring that they

be familiar with genomic science or the underlying data.

In summary, theMayo-Baylor RIGHT 10KStudy strongly

suggests that preemptive sequence-based PGx panel imple-

mentation can be useful clinically—especially if delivered at

the point-of-carewhen drugs are being prescribed—and that it

would apply to almost every patient. These resultsmay also be

helpful to other medical centers as they consider how or

whether they wish to implement preemptive sequence-based

PGx panels. This study also serves as an important

stepping-stone in the development of the infrastructure

necessary to fully use the coming incorporation of genome
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sequencing as opposed to targeted sequencing in helping to

guide clinical care. We should point out that the FDA has

voiced some concerns with regard to PGx, particularly direct

to consumer PGx testing and the possible extension of the

application of test results beyond supporting clinical evi-

dence.16,29 All testing described in this article was conducted

in a CAP-CLIA environment with clinician supervision of

every aspect of the study. Furthermore, all test interpretations

rested on validated consensus-based guidelines.6,8-10 It

should also be emphasized that PGx will continue to evolve.

For example, the future will almost certainly include the

application of machine learning–based predictive algorithms

that use both clinical and genomic information joined with

other types of data that will extend well beyond genotypes for

the small number of genes included in the drug–gene pair

alerts listed in Table 1.30 Finally, although PGx has not yet

been broadly adopted in the clinic, it clearly offers the promise

of ultimately becoming a standard component of clinical

practice that will help the health care team optimize phar-

macotherapy for all patients.

Data Availability

As outlined by Bielinski et al,15,31 the RIGHT cohort is a

resource for pharmacogenomic research. As stated earlier, a

RIGHT Data Access Committee has been created to review

data requests for use of RIGHT data. External access to the

data is facilitated by the Mayo Clinic Biobank (https://www.

mayo.edu/research/centers-programs/mayo-clinic-biobank/

overview). All potentially damaging variants observed in

this study are presented with annotation in Supplemental

Table 2. The software developed in this study primarily

represents output/input wrappers or filtering scripts and is

described in Supplemental Methods. The privately devel-

oped CNVAR software (submitted for patent) was

conceived and refined on the basis of the genomic targets

specified by the PGx capture reagent (PGx-seq) and would

need extensive adjustments for other captures. However,

those interested in using CNVAR may contact the authors to

determine whether the software could be applied to their

data set. Omixon HLA Explore is commercially available,

whereas the remaining underlying software is available at

https://www.hgsc.bcm.edu/software.
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