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Abstract: Clinical annotations for the actionable pharmacogenetic variants affecting the efficacy of

cardiovascular drugs have been collected, yet their impacts on elderly patients with coronary artery

disease (CAD) undergoing polypharmacy remain uncertain. We consecutively enrolled 892 elderly

patients (mean age 80.7 ± 5.2) with CAD and polypharmacy. All the included patients underwent

genotyping for 13 variants in 10 pharmacogenes (CYP2C19, CYP2C9, CYP4F2, CYP2D6, VKORC1,

SLCO1B1, APOE, ACE, ADRB1, and MTHFR), which have the clinical annotations for 12 drugs that are

commonly prescribed for patients with CAD. We found that 80.3% of the elderly CAD patients had at

least one drug–gene pair associated with a therapeutical drug change. After adjusting for covariates,

the number of drug–gene pairs was independently associated with a decreased risk of both major

cardiovascular events (MACEs) (adjusted hazard ratio [HR]: 0.803, 95% confidence interval [CI]:

0.683–0.945, p = 0.008) and all-cause mortality (adjusted HR: 0.848, 95% CI: 0.722–0.996, p = 0.045), but

also with an increased risk of adverse drug reactions (ADRs) (adjusted HR: 1.170, 95% CI: 1.030–1.329,

p = 0.016). The Kaplan–Meier survival curves showed that compared to patients without a drug–gene

pair, a significantly lower risk of MACEs could be observed in patients with a drug–gene pair during

a 4-year follow-up (HR: 0.556, 95% CI: 0.325–0.951, p = 0.013). In conclusion, the carrier status of the

actionable drug–gene pair is predictive for the clinical outcomes in elderly patients with CAD and

polypharmacy. Implementing early or preemptive pharmacogenetic panel-guided polypharmacy

holds the potential to enhance clinical outcomes for these patients.
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1. Introduction

Cardiovascular disease, specifically coronary artery disease (CAD), currently ranks
first in terms of global mortality and morbidity [1]. Elderly people are more prone to
CAD due to the key role of age in impairing the function of the cardiovascular system [2].
Although the age-adjusted CAD death rate is falling with the progress of healthcare tech-
nology, leading to a higher proportion of individuals living with CAD, the number of
elderly CAD patients with multimorbidity and polypharmacy is increasing [3,4]. The
concurrent use of at least five prescription medications is present in 30–50% of adults
≥65 years; 10–20% use ≥10 medications, and most elderly individuals will be on polyphar-
macy during their remaining lifespan [5]. Among these medications, cardiovascular drugs
are the most widely used and the most frequent cause of adverse drug reactions in ambu-
latory elderly individuals [6]. Problematic polypharmacy is associated with an increase
in adverse health outcomes including adverse drug reactions (ADRs), falls, functional
impairment, frailty, increased length of hospital stays, readmissions, and mortality, which
thus presents a significant challenge for personalized medication in elderly patients with
CAD [3]. Variations in genes encoding for drug-metabolizing enzymes, drug transporters,
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and drug targets are widely recognized to contribute to pharmacokinetic (PK) and phar-
macodynamic (PD) inter-patient differences in drug response [7]. Numerous studies have
indicated strong evidence for the effect of actionable genotypes on the outcomes of vascular
drugs [8]. In addition, more than 90% of the general population have at least one actionable
genotype that is likely to influence their drug response, and over 60% of patients in primary
care clinics are prescribed at least one drug with pharmacogenetic guidance [9]. It has
been hypothesized that the use of a pharmacogenetic panel-based test will predict the
response to multiple drugs over a patient’s lifetime, potentially improving drug-related
outcomes, especially in elderly patients with polypharmacy [10]. To date, the majority of
research on the efficacy of pharmacogenetic testing has focused on the association between
a single drug–gene combination and the clinical outcomes [11]. The feasibility and clinical
utility of panel-based genotyping to guide the prescription of polypharmacy in elderly
patients remain uncertain [12]. The aim of this study was to explore the pharmacogenetic
panel-based prediction of clinical outcomes in elderly CAD patients with polypharmacy.

2. Materials and Methods

2.1. Participants and Clinical Characteristics

This single-center observational cohort study consecutively included elderly patients
aged ≥65 years old who were hospitalized for CAD and discharged with prescriptions of
≥5 medications in the Department of Cardiology, General Hospital of Chinese Peoples’s
Liberation Army, from August 2018 to May 2022. Patients with severe renal or liver insuffi-
ciency (Child–Pugh class C liver disease or Kidney Disease Outcomes Quality Initiative
Stage 5 chronic kidney disease), under organ replacement therapy, who failed to provide
a blood sample, with severe diseases and an expected life expectancy <12 months, with
invasive solid tumors or hematologic malignancies, or who experienced loss of follow-up
within 1 year after study enrollment were excluded. Demographic information and medical
data were extracted from the electronic health records. All included participants signed
written informed consents before taking part in the study. The study was approved by the
ethics committees of the People’s Liberation Army General Hospital (S2021-664-02).

2.2. Drug–Gene Pair Selection

A drug–gene pair was characterized by the clinical annotations associated with the
pharmacogenetic variant, which had the actionable therapeutic recommendation sup-
ported by a minimum of Level 3 evidence from the Pharmacogenomics Knowledge Base
(PharmGKB) [13]. Additionally, the minor allele frequency (MAF) of the variant was
required to be at least 1% in East Asian populations, as reported by the 1000 Genomes
Project [14]. Accordingly, drug–gene pairs were determined for each patient based on the
panel of 13 genetic variants [CYP2C19*2 (rs4244285), CYP2C19*3 (rs4986893), CYP2C19*17
(rs12248560), CYP2C9*3 (rs1057910), CYP4F2*3 (rs2108622), CYP2D6*10 (rs1065852), VKORC1
(rs9923231), SLCO1B1*5 (rs4149056), APOE (rs7412), AOPE (rs429358), ACE (rs1799752),
ADRB1 (rs1801253), and MTHFR (rs1801133)] of 10 genes associated with 12 drugs (clopido-
grel, omeprazole, rabeprazole, warfarin, atorvastatin, rosuvastatin, fluvastatin, pravastatin,
simvastatin, metoprolol, captopril, and folic acid) that are commonly prescribed for elderly
patients with CAD. The clinical annotations for APOE genotypes were validated addition-
ally according to the relevant literature [15]. The prevalence of the non-reference allele for
VKORC1 and ADRB1 was up to 70% in the Chinese population. To reduce the impact of
this high variability on drug–gene pairs in individuals, standard medication treatments
was determined according to the individuals with the non-reference alleles. Drug–gene
pairs were categorized into increased efficacy and decreased drug efficacy according to
functional status. Increased efficacy indicates improved drug efficacy, toxicity, or lower
required drug dosage. Conversely, decreased efficacy indicates reduced efficacy, toxicity,
and a need for higher drug dosage. Details on the drug–gene pairs and related medications,
gene, clinical annotations, and functional status are provided in Table S1.
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2.3. Multiplexed Targeted Panel Genotyping

Nucleic acid mass spectrometry was employed to genotype the panel of 13 phar-
macogenetic variants mentioned above. Genome DNA was isolated from the sediment
of the peripheral blood cells for each individual and amplified through multiplex poly-
merase chain reaction (PCR). The amplicons underwent multiplex single-base extension
(SBE) reactions following inactivation using shrimp alkaline phosphatase. The resulting
SBE products were applied onto the SpectroCHIP II array and based on the MassARRAY
Analyzer system using matrix-assisted laser desorption–ionization time-of-flight mass spec-
trometry (MALDI-TOF) technology. Genotypes at specified loci were identified using Typer
software version 4.0 (Agena Biosciences, San Diego, CA, USA) in conjunction with SBE
peak intensity analysis. Diplotypes for particular genes were inferred utilizing a haplotype
translation table.

2.4. Clinical Outcomes

All enrolled patients received at least 1 year of follow-up. The clinical outcomes were
collected by the investigators through electronic medical records and telephone communi-
cations. The primary clinical outcome was the incidence of major adverse cardiovascular
events (MACEs), defined as a composite of cardiovascular mortality, nonfatal myocardial
infarction, stent thrombosis, nonfatal stroke, and unplanned coronary revascularization.
The secondary outcomes included all-cause mortality, adverse drug reactions (ADRs), and
readmission. ADRs encompassed antithrombotic drug-related bleeding events as defined
by the Bleeding Academic Research Consortium (BARC) criteria [16], statin-associated
musculoskeletal symptoms according to the consensus of European Atherosclerosis Society
Panel Statement on Assessment, Aetiology and Management [17], as well as drug-induced
hypotension and falls in accordance with the 2019 American Geriatrics Society Beers
Criteria® [18].

2.5. Statistical Analysis

Continuous variables were presented as means ± standard deviations (SDs), and
categorical variables were presented as frequencies (%) or medians with an interquartile
range (IQR), respectively. The drug–gene pairs with effects on the clinical outcomes were
summed up in a regression model. Association analyses between drug–gene pairs and
clinical outcomes were performed using multivariate logistic regression with adjustment
for age, gender, body mass index (BMI), number of comorbidities, coexisting diseases
(hepatic and renal insufficiency, diabetes mellitus, heart failure, myocardial infarction), and
number of drugs. Kaplan–Meier analysis was applied to construct the time-to-event curves
for MACEs. The difference between the survival curves were compared with the log-rank
test. The survival curves were analyzed using the log-rank test to assess differences. A
two-sided p value of 0.05 was considered to indicate statistical significance. All statistical
analyses were calculated using the R computing environment version 4.4.0.

3. Results

3.1. Baseline Clinical Characteristics

A total of 892 eligible patients were enrolled in the cohort (Figure 1). The mean
age of the patients in the entire cohort was 80.7 ± 5.2 years (ranged from 65 to 97), with
a male proportion of 61.8%. A total of 37.4% of the patients underwent percutaneous
coronary intervention (PCI), and 17.9% had ≥5 comorbidities. The median number of
oral prescriptions per patient at discharge was 7 (IQR 6–8, ranged from 5 to 13). The
most common medications at discharge were lipid-lowering agents (93.8%), followed by
antiplatelet agents (92.7%). The demographic characteristics of the study population are
presented in Table 1.
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Figure 1. Flowchart of the study.

Table 1. Baseline characteristics of participants in the cohort study.

Characteristics n = 892
Demographics

Gender (Male), n (%) 551 (61.8%)
Age (years), mean (SD) 80.7 (5.2)
BMI (kg/m2), Mean (SD) 24.4 (3.6)
Smoking, n (%) 88 (9.9%)
Drinking, n (%) 166 (18.6%)

Comorbidities
Number of comorbidities, n (%)

239 (26.8%)
283 (31.8%)
210 (23.5%)

≥5 160 (17.9%)
Myocardial infarction, n (%) 131 (14.7%)
Heart failure, n (%) 73 (8.2%)
Hypertension, n (%) 720 (80.7%)
Diabetes mellitus, n (%) 378 (42.4%)
Hyperlipidemia, n (%) 210 (23.5%)
Stroke, n (%) 170 (19.1%)
Hepatic and renal insufociency, n (%) 133 (14.9%)
PCI, n (%) 334 (37.4%)

Drugs at discharge
Number of drugs/patient, median (IQR, range) 7 (6–8, 5–13)
Antiplatelet agents, n (%) 827 (92.7%)
Oral anticoagulation agents, n (%) 97 (10.9%)
Lipid-lowering agents, n (%) 837 (93.8%)
Calcium channel blockers, n (%) 403 (45.2%)
Beta blockers, n (%) 569 (63.8%)
ACEI, n (%) 39 (4.4%)
ARB, n (%) 280 (31.4%)
Diuretic, n (%) 263 (29.4%)
PPI, n (%) 562 (63.0%)
Folic acid, n (%) 47 (5.3%)

Figure 1. Flowchart of the study.

Table 1. Baseline characteristics of participants in the cohort study.

Characteristics n = 892

Demographics
Gender (Male), n (%) 551 (61.8%)
Age (years), mean (SD) 80.7 (5.2)

BMI (kg/m2), Mean (SD) 24.4 (3.6)
Smoking, n (%) 88 (9.9%)
Drinking, n (%) 166 (18.6%)

Comorbidities
Number of comorbidities, n (%)

2 239 (26.8%)
3 283 (31.8%)
4 210 (23.5%)
≥5 160 (17.9%)

Myocardial infarction, n (%) 131 (14.7%)
Heart failure, n (%) 73 (8.2%)
Hypertension, n (%) 720 (80.7%)
Diabetes mellitus, n (%) 378 (42.4%)
Hyperlipidemia, n (%) 210 (23.5%)
Stroke, n (%) 170 (19.1%)
Hepatic and renal insufficiency, n (%) 133 (14.9%)
PCI, n (%) 334 (37.4%)

Drugs at discharge
Number of drugs/patient, median (IQR, range) 7 (6–8, 5–13)
Antiplatelet agents, n (%) 827 (92.7%)
Oral anticoagulation agents, n (%) 97 (10.9%)
Lipid-lowering agents, n (%) 837 (93.8%)
Calcium channel blockers, n (%) 403 (45.2%)
Beta blockers, n (%) 569 (63.8%)
ACEI, n (%) 39 (4.4%)
ARB, n (%) 280 (31.4%)
Diuretic, n (%) 263 (29.4%)
PPI, n (%) 562 (63.0%)
Folic acid, n (%) 47 (5.3%)

BMI, body mass index; PCI, percutaneous coronary intervention; ACEI, angiotensin-converting enzyme inhibitor;
ARB, angiotensin II receptor blocker; PPI, proton pump inhibitor. n (%), number (percent) of patients; SD, standard
deviation; IQR, interquartile range.
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3.2. Pharmacogenetic Variants and Genotypes

The pharmacogenetic allele profiling of the elderly patients with CAD for the main
10 pharmacogenes is displayed in Figure 2a. The proportions of pharmacogenetic alleles
were comparable with the data described for the East Asian in the 1000 Genome Project.
The gene VKORC1 exhibited the highest variability, with 91.3% of the alleles detected
being the non-reference allele, followed by ADRB1 (73.2%) and CYP2D6 (51.1%). The
allele, genotype, and phenotype frequency of the cohort for the 13 variants in 10 phar-
macogenes are presented in Table S2. The genotype-based CYP metabolizer phenotypes
for the pharmacogenes are shown in Figure 2b. More than 50% of the patients showed a
different metabolizer status from the normal metabolism (NM) status for CYP2C19 and
CYP2D6, while more than 50% of the patients displayed an NM status for CYP4F2 and
CYP2C9. Among the non-CYP metabolic genes, more than 50% of the patients presented a
heterozygous or homozygous status for VKORC1, ADRB1, MTHFR, and ACE, while more
than 70% presented a wild-type status for SLCO1B1 and APOE (Figure 2c).

BMI, body mass index; PCI, percutaneous coronary intervention; ACEI, angiotensin-converting en-
zyme inhibitor; ARB, angiotensin II receptor blocker; PPI, proton pump inhibitor. n (%), number 
(percent) of patients; SD, standard deviation; IQR, interquartile range.
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Figure 2. Pharmacogenetic allele, genotype, and phenotype proportions of the cohort for the

13 variants in 10 pharmacogenes. (a) Proportion of the different pharmacogenetic alleles (star (*) alle-

les) or variants. (b) Proportion of the genotype-based CYP metabolizer phenotypes. (c) Proportion of

the non-CYP pharmacogene genotypes. WT, wild-type; HET, heterozygous; HOM, homozygous; NM,

normal metabolizer; IM, intermediate metabolizer; PM, poor metabolizer; RM, rapid metabolizer.

3.3. Distribution of Drug–Gene Pairs

A total of 1404 drug–gene pairs were identified, with at least one drug–gene pair
observed in 716 (80.3%) patients. Among these patients, 560 (62.8%) had at least one
drug–gene pair with increased efficacy, while 526 (59.0%) had at least one drug–gene pair
with decreased efficacy (Figure 3). The most common drug–gene pair with increased
efficacy involved the CYP2C19-proton pump inhibitor (37.7%), followed by the SLCO1B1-
statin (18.2%). Conversely, the most common drug–gene pair with decreased efficacy was
CYP2C19-clopidogrel (38.0%), followed by ADRB1-metoprolol (20.5%) (Table S3). Figure S1
outlines the percentage of therapeutic recommendations according to the PharmGKB
guideline in relation to drug–gene pairs. Notably, over half of the patients carried drug–
gene pairs that were linked to the CYP2C19, CYP2D6, and CYP4F2 genotypes.
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3.4. Association between Drug–Gene Pairs and Clinical Outcomes

All included participants were followed for at least 1 year, with a median follow-up
time of 39 months. During the follow-ups, the primary outcome of MACEs was recorded
in 151 (16.9%) individuals. All-cause mortality occurred in 186 (20.8%) patients, ADRs
in 260 (29.1%), and readmission in 410 (46.0%) patients. The incidence rates reported of
ADRs were as follows: 15.9% for bleeding events, 14.0% for falls, 4.4% for statin-associated
musculoskeletal symptoms, and 1.2% for hypotension.

The univariate analysis conducted in this study revealed a significant association
between the number of drug–gene pairs and MACEs (hazard ratio [HR]: 0.821, 95% confi-
dence interval [CI]: 0.700–0.962, p = 0.015) as well as ADRs (HR: 1.150, 95% CI: 1.016–1.302,
p = 0.027). Additionally, a borderline association was observed with all-cause mortality.
When we categorized the drug–gene pairs according to functional status, a significant
association was found between the number of drug–gene pairs with increased efficacy
and the outcomes of both MACEs (HR: 0.788, 95% CI: 0.623–0.996, p = 0.046) and ADRs
(HR: 1.219, 95% CI: 1.017–1.460, p = 0.032). A borderline association was found between
the number of drug–gene pairs with decreased efficacy and the outcomes of both all-cause
mortality and MACEs (Table 2).

Table 2. Associations between the number of drug–gene pairs and clinical outcomes.

All-Cause Mortality MACEs ADRs Readmission

HR (95% CI) p Value HR (95% CI) p Value HR (95% CI) p Value HR (95% CI) p Value

Univariate analysis
Number of drug–gene pairs 0.869 (0.753–1.004) 0.057 0.821 (0.700–0.962) 0.015 1.150 (1.016–1.302) 0.027 1.076 (0.960–1.206) 0.208

Increased efficacy 0.894 (0.725–1.103) 0.297 0.788 (0.623–0.996) 0.046 1.219 (1.017–1.460) 0.032 1.001 (0.847–1.184) 0.987
Decreased efficacy 0.792 (0.626–1.002) 0.052 0.795 (0.616–1.027) 0.079 1.133 (0.927–1.386) 0.223 1.211 (1.006–1.458) 0.043

Multivariable analysis
Number of drug–gene pairs 0.848 (0.722–0.996) 0.045 0.803 (0.683–0.945) 0.008 1.170 (1.030–1.329) 0.016 1.074 (0.955–1.208) 0.232

Increased efficacy 0.933 (0.739–1.179) 0.563 0.777 (0.611–0.989) 0.044 1.235 (1.026–1.485) 0.025 0.990 (0.833–1.176) 0.905
Decreased efficacy 0.704 (0.540–0.918) 0.010 0.761 (0.586–0.989) 0.041 1.161 (0.945–1.425) 0.155 1.222 (1.010–1.478) 0.039

Multivariable logistic regression adjusted by age, gender, BMI, number of comorbidities, coexisting diseases (my-
ocardial infarction, heart failure, diabetes mellitus, hepatic and renal insufficiency), and number of comedications.
Major adverse cardiovascular events (MACEs) include cardiovascular mortality, nonfatal myocardial infarction,
stent thrombosis, nonfatal stroke, and unplanned revascularization. Adverse drug reactions (ADRs) include bleed-
ing, fall, hypotension, and statin-associated musculoskeletal symptoms. HR, hazard ratio; CI, confidence interval.
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After adjusting for covariates, the number of drug–gene pairs was independently
associated with MACEs (adjusted HR: 0.803, 95% CI: 0.683–0.945, p = 0.008). In analysis
of drug-gene pairs based on their functional status, both the number of drug–gene pairs
with increased efficacy (adjusted HR: 0.777, 95% CI: 0.611–0.989, p = 0.044) and the num-
ber of drug–gene pairs with decreased efficacy (adjusted HR: 0.761, 95% CI: 0.586–0.989,
p = 0.041) were significantly associated with a lower incidence rate of MACEs. The number
of drug–gene pairs was also independently associated with a lower risk of all-cause mortal-
ity (adjusted HR: 0.848, 95% CI: 0.722–0.996, p = 0.045) and a higher risk of ADR (adjusted
HR: 1.170, 95% CI: 1.030–1.329, p = 0.016). According to the function of drug–gene pairs,
the number of drug–gene pairs with decreased efficacy was significantly associated with a
decreased rate of all-cause mortality (adjusted HR: 0.704, 95% CI: 0.540–0.918, p = 0.010),
and the number of drug–gene pairs with increased efficacy was associated with a higher
incidence rate of ADRs (adjusted HR: 1.235, 95% CI: 1.026–1.485, p = 0.025). As for read-
mission, a significant contribution was found only for the number of drug–gene pairs with
decreased efficacy (adjusted HR: 1.222, 95% CI: 1.010–1.478, p = 0.039) (Table 2).

The association between drug–gene pairs formed by each specific drug and the clin-
ical outcomes exhibited a consistent trend with the expected results of the whole study
(Table S4). Sensitivity analyses were performed by employing different models of clinical
covariance adjustment. The findings exhibited consistency across various analytical models
for the association between drug–gene pairs and MACEs, as well as ADRs (Table S5).

There was no significant difference in the clinical baseline between the groups with and
without drug–gene pairs (Table S6). The Kaplan–Meier analysis showed that a significantly
lower MACEs rate was found in drug–gene pair carriers compared to non-carriers during
the 4-year follow-up (HR: 0.556, 95% CI: 0.325–0.951, p = 0.013). However, no significant
difference in MACEs rates was observed within a 1-year follow-up (Figure 4).
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Major adverse cardiovascular events (MACEs) include cardiovascular mortality, nonfatal myocardial

infarction, stent thrombosis, nonfatal stroke, and unplanned revascularization.

4. Discussion

The main findings of the present study indicated that the high prevalence of drug–gene
pairs among elderly patients with CAD might serve as a predictive indicator for the clinical
outcomes, particularly in patients undergoing prolonged treatment with medications. As
we know, this study represented the first attempt to assess the impacts of drug–gene pairs
on the clinical outcomes in elderly patients with CAD and polypharmacy. It suggests
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that pharmacogenetic panel-based genotyping could facilitate personalized medication,
especially in elderly patients with long-term polypharmacy.

Elderly patients with polypharmacy have been identified as an appealing group for
pharmacogenetic panel-based genotyping to optimize medication precision [19]. Pharma-
cogenetic medications are commonly prescribed for elderly patients with polypharmacy,
and it has been found that an actionable genetic variant can often be observed in elderly
individuals. Consistent with previous publications, our study showed that 100% of the in-
cluded elderly patients with CAD had at least one actionable pharmacogenetic variant, and
80.3% exhibited at least one relevant drug–gene pair [20,21]. As expected, the drugs related
with the more variable genes showed the highest proportion of therapeutical changes [22].
The considerable variability in drug responses might necessitate therapeutic modifications
for a significant proportion of elderly individuals [12].

Our investigation uncovered a negative relationship between the number of drug–
gene pairs and MACEs, as well as mortality, while a positive correlation was observed
between the number of drug–gene pairs and ADRs in elderly patients with CAD and
polypharmacy. There is a scarcity of research exploring the association between drug–gene
pairs and the clinical outcomes of MACEs and death in elderly patients with CAD and
polypharmacy. The association identified between drug–gene pairs and ADRs is in line
with the results of previous investigations [23–25]. Therefore, we speculated that the elderly
patients with more drug–gene pairs might be more prone to experiencing ADRs due to
the influence of the actionable genotypes on the drugs, potentially leading to an increased
frequency of medication adjustments or dosage titration [26].

The routine adjustment of pharmacotherapy informed by pharmacogenetic data may
reduce the occurrence of ADRs, particularly in elderly patients who are more susceptible to
receiving inappropriate prescriptions. A recent meta-analysis observed that medication
modification was more prevalent among elderly patients who underwent pharmacoge-
netic testing in comparison to those who received standard treatment [26]. It indicated
that healthcare professionals could utilize pharmacogenomic knowledge to assist elderly
patients in improving their therapeutic outcomes by eliminating potentially ineffective
medication and replacing medications with unfavorable profiles. Despite the potential
increase in ADRs in patients with more drug–gene pairs, the personalized medication
approach resulting from this could potentially lower the risk of MACEs and overall mor-
tality in elderly CAD patients being treated with multiple medications. Our subgroup
analysis confirmed that an increased number of drug–gene pairs that are associated with
increased efficacy was significantly linked to a higher likelihood of ADRs and a decreased
incidence of MACEs. A higher age is associated with increased blood concentrations of
drugs, altered metabolism, and increased risk of ADRs [27]. Consequently, elderly patients
with drug–gene pairs exhibiting increased efficacy were more likely to have an elevated
occurrence of ADRs [28]. Adjusting their prescribed medications in response to these ADRs
could potentially reduce the risk of MACEs. The observation indicated that healthcare
providers might consider reducing drug dosages for elderly patients with drug–gene pairs
that increase drug efficacy or toxicity. It is important to note that while there may be an
increase in ADRs and a decrease in MACEs for patients with drug–gene pairs exhibit-
ing increased efficacy, this benefit may be offset by the risk of all-cause mortality [29,30].
In addition, our investigation revealed a negative association between the number of
decreased-efficacy-related drug–gene pairs and MACEs, as well as mortality. The presence
of the drug–gene pairs with decreased efficacy was similar to the drug dosage reduction in
the elderly patients. Therefore, the therapeutic dosages of cardiovascular drugs for elderly
patients with CAD should be down-regulated accordingly.

Although the passive or reactive regulation of drug type or dosage does occur even
when the carrier status of the actionable drug–gene pairs is unknown, the clinical benefits
of drug titration for reducing MACEs in carriers of drug–gene pairs could only be observed
during long-term (4-year) drug therapy but not within 1 year in the elderly patients.
Recently, the high-quality evidence of the PREPARE study showed that early or pre-
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emptive panel-based genotyping-guided treatments could result in a 30% reduction in
ADRs [31]. Additionally, a post hoc analysis in the TAILOR-PCI trial demonstrated a
significant reduction in the primary endpoint, mainly within the first 3 months under
genotype-guided antiplatelet treatment in patients with PCI [32]. Therefore, we speculated
that drug adjustments according to early or preemptive pharmacogenetic testing could be
beneficial for the prevention of ADRs and MACEs at an earlier stage of drug therapy in
elderly patients with CAD [33].

This study has several limitations that merit discussion. Firstly, it was a single-center
observational study, and the results might be influenced by chance due to the relatively
small sample size. Secondly, there is a potential bias that might prevent the fair gener-
alization of the study’s findings to other patients with CAD, under the age of 65 and in
non-Asian populations. Thirdly, the study focused on a pharmacogenetic panel test of
commonly prescribed cardiovascular medications and its impact on clinical outcomes.
The potential impact of such a test could be more significant if all drugs were considered;
however, defining efficacy and safety endpoints for all drugs poses challenges. Fourthly, the
study did not explore the potential benefits of the pharmacogenetic panel test for individual
drugs, as the primary objective was to prospectively evaluate a comprehensive pharma-
cogenetics test panel encompassing numerous drugs. Fifthly, the variants in the ABCB1
and CES1 genes, especially CES1 rs2244613, may influence the plasma concentrations of
direct oral anticoagulants (DOACs) and the occurrence of bleeding side effects [34], with
the level of evidence 3 on PharmGKB. In the present study, the observed clinical outcomes
focused on drug efficacy and side effects. However, the available evidence linking CES1
rs2244613 to bleeding events associated with DOACs remains limited and controversial,
especially within the Asian population [35]. Therefore, although 10% of the study popu-
lation received treatment with DOACs, we have chosen not to incorporate these genetic
variants into the present panel. Given the relatively extensive use and potential bleeding
side effects of DOACs in elderly patients with CAD, it might be beneficial to investigate
the impact of pharmacogenes on the clinical outcomes of DOACs in future studies. Lastly,
while drug–drug interactions are known to affect drug pharmacokinetics, they were not
integrated into the model. Subsequent research should include drug–drug interactions and
drug–gene pair associations as the quality of reference data advances.

5. Conclusions

The carrier status of drug–gene pairs serve as a predictive factor for the clinical out-
comes in elderly patients with CAD. Pharmacogenetic panel-based genotyping, particularly
when conducted early or preemptively, has the potential to improve clinical outcomes and
thereby drive towards personalized or precision medicine in elderly patients with CAD
and polypharmacy.
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