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Abstract

IMPORTANCE Precise estimation of a patient’s drugmetabolism capacity is important for

antiseizure dose personalization.

OBJECTIVE To quantify the differences in plasma concentrations for antiseizure drugs associated

with variants of genes encoding drugmetabolizing enzymes.

DATA SOURCES PubMed, Clinicaltrialsregister.eu, ClinicalTrials.gov, International Clinical Trials

Registry Platform, and CENTRAL databases were screened for studies from January 1, 1990, to

September 30, 2023, without language restrictions.

STUDY SELECTION Two reviewers performed independent study screening and assessed the

following inclusion criteria: appropriate genotyping was performed, genotype-based categorization

into subgroups was possible, and each subgroup contained at least 3 participants.

DATA EXTRACTIONAND SYNTHESIS TheMeta-analysis of Observational Studies in Epidemiology

(MOOSE) guidelines were followed for data extraction and subsequent quality, validity, and risk-of-

bias assessments. The results from the included studies were pooled with random-effect meta-

analysis.

MAINOUTCOMESANDMEASURES Plasma concentrations of antiseizure drugs were quantified

with the dose-normalized area under the concentration-time curve, the dose-normalized steady

state concentration, or the concentrations after a single dose at standardized dose and sampling

time. The ratio of themeans was calculated by dividing themean drug plasma concentrations of

carriers and noncarriers of the pharmacogenetic variant.

RESULTS Data from 98 studies involving 12 543 adult participants treated with phenytoin,

valproate, lamotrigine, or carbamazepine were analyzed. Studies were mainly conducted within East

Asian (69 studies) or White or European (15 studies) cohorts. Significant increases of plasma

concentrations compared with the reference subgroup were observed for phenytoin, by 46% (95%

CI, 33%-61%) in CYP2C9 intermediate metabolizers, 20% (95% CI, 17%-30%) in CYP2C19

intermediate metabolizers, and 39% (95% CI, 24%-56%) in CYP2C19 poor metabolizers; for

valproate, by 12% (95% CI, 4%-20%) in CYP2C9 intermediate metabolizers, 12% (95% CI, 2%-24%)

in CYP2C19 intermediate metabolizers, and 20% (95% CI, 2%-41%) in CYP2C19 poor metabolizers;

and for carbamazepine, by 12% (95% CI, 3%-22%) in CYP3A5 poor metabolizers.

CONCLUSIONSANDRELEVANCE This systematic review andmeta-analysis found that CYP2C9 and

CYP2C19 genotypes encoding low enzymatic capacity were associated with a clinically relevant

increase in phenytoin plasma concentrations, several pharmacogenetic variants were associated
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Abstract (continued)

with statistically significant but only marginally clinically relevant changes in valproate and

carbamazepine plasma concentrations, and numerous pharmacogenetic variants were not

associated with statistically significant differences in plasma concentrations of antiseizure drugs.

JAMA Network Open. 2024;7(8):e2425593. doi:10.1001/jamanetworkopen.2024.25593

Introduction

The variability of the pharmacokinetics of antiseizure drugs is considerable, leading to significant

interindividual variations in plasma concentrations. Themetabolism and disposition of many

antiseizure drugs is facilitated by polymorphic metabolizing enzymes whose activities are genetically

determined.1 As a result, considerable research efforts have beenmade to identify and validate

variations in genes encoding these enzymes that can be used to predict plasma concentrations and

subsequently individualize the dose of antiseizure drugs. However, the results of these studies have

often remained inconclusive, asmany of themwere not sufficiently powerful to accurately quantify

the difference between subgroups determined by genotype and to assess their clinical relevance.

Subsequently, several meta-analyses2-12 have attempted to address the problem of insufficient

power by pooling data from published reports on themost promising associations between

pharmacogenetic variants and variations in antiseizure drug concentrations. However, a critical

review shows that many of these meta-analyses either used inappropriate methods or included only

subsets of all available studies (Table 1).

Precise and accurate quantification of pharmacogenetic associations is critical to determine

their relevance to clinical practice and subsequently implement genotype-guided dose

recommendations tailored for specific subpopulations. Recently, for example, we and others have

demonstrated the clinical utility13 and cost-effectiveness14 of personalizing the dose of psychiatric

drugs using pharmacogenetic testing based on variations in the genes encoding drug-metabolizing

enzymes CYP2C19 (OMIM: 124020) and CYP2D6 (OMIM: 608902). As using a similar approach could

potentially be a way to improve treatment with antiseizure drugs, the aim of this systematic review

and meta-analyses of prospective and retrospective cohort studies was to investigate whether

Table 1. Comparison of the Previous and the CurrentMeta-Analyses

Meta-analysis Drug-gene interaction Comment

Trials included in meta-analysis, No.

Reference This study

Kanjanasilp et al,2 2021 Phenytoin-CYP2C9 Underpowered; results were highly influenced by 1 study; Michaelis-Menten
constant was assessed and not C/D

4 20

Phenytoin-CYP2C19 8 12

Liao et al,4 2018 Phenytoin-CYP2C9 Underpowered; Michaelis-Menten constant was assessed and not C/D 6 20

Phenytoin-CYP2C19 6 12

Fang et al,3 2021 Valproate-CYP2C9 Analyzed C/D; several eligible trials were omitted 6 12

Yoon et al,5 2020 Valproate-CYP2C9 Analyzed C/D; several eligible trials were omitted even after accounting for
inclusion criteria

5 21

Kim et al,6 2019 Valproate-UGT1A6 Analyzed C/D; several eligible trials were omitted 6 25

Wang et al,7 2018 Valproate-UGT2B7 Analyzed C/D; many eligible trials were published after this manuscript; omitted
few eligible trials even after accounting for search date

9 23

Li et al,8 2018 Lamotrigine-UGT1A4 Limited scope: focused only on Chinese cohorts 6 10

Kim et al,9 2018 Lamotrigine-UGT1A4 Analyzed C/D; several eligible trials were published after this study; omitted few
eligible trials even after accounting for search date

5 12

Lamotrigine-UGT2B7 3 7

Hu et al,10 2021 Carbamazepine-EPHX1 Included the same set of studies as the current meta-analysis if the search date
is taken into account; results did not account for the active metabolite

6 7

Zhang et al,11 2021 Carbamazepine-EPHX1 Included the same set of studies as the current meta-analysis if the search date
is taken into account; the metabolite and parent drug are analyzed separately

4 5

Zhao et al,12 2021 Carbamazepine-CYP3A5 Few eligible trials were omitted even after accounting for strict inclusion
criteria; the metabolite and parent drug are analyzed separately

8 13

Abbreviation: C/D, concentration-to-dose ratio.
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variants in genes encoding drug-metabolizing enzymes were associated with significantly altered

plasma concentrations of antiseizure drugs and to distinguish betweenmarginal and clinically

relevant differences caused by specific pharmacogenetic variants.

Methods

The protocol for the systematic review and the statistical methods were pre-registered via the

PROSPERO platform (identifier: CRD42023387703). Themeta-analyses were conducted in

accordance with theMeta-analysis of Observational Studies in Epidemiology (MOOSE) reporting

guideline.

Principle Parameters for the Analysis

Initially, all clinically relevant antiseizure drugswere considered for analysis.1Gabapentin, topiramate,

pregabalin, levetiracetam, and felbamate were then excluded because they are predominantly

excreted unchanged via the kidneys.15 Tiagabine and clonazepamwere not included because they

are not metabolized by enzymes with a high frequency of functional allelic variants.16 Although

phenobarbital and clobazam are metabolized by the polymorphic CYP2C19 enzyme, they were not

included because phenobarbital is mainly used acutely for alcohol withdrawal or agitation and

clobazam is predominantly used as add-on therapy. Next, for practical reasons, the meta-analysis

was only conducted if the total number of participants across all included studies for the given drug-

gene interaction was greater than 500. As the data for zonisamide and oxcarbazepine did not fulfill

this criterion, only carbamazepine, lamotrigine, phenytoin, and valproate were chosen for themeta-

analysis. The enzymes involved inmetabolism of these drugs are CYP3A4, CYP3A5, EPHX1, UGT2B7,

and CYP2B6 for carbamazepine17; UGT1A4, UGT2B7, CYP2A6, and CYP2D6 for lamotrigine18;

CYP2C9 and CYP2C19 for phenytoin19; and UGT1A4, UGT1A6, UGT1A8, UGT1A9, UGT1A10, UGT2B7,

UGT2B15, CYP2C9, CYP2B6, and CYP2A6 for valproate.20 Each pharmacogenetic association was

analyzed separately, and participants were divided into subgroups based on genotype according to

previously established guidelines15,21-25 (Table 2). Finally, the mean plasma concentrations were

compared between the genotype-defined control group and the variant subgroups associated with

potentially different drugmetabolism compared with the control group.15,21-25

Search Strategy, Selection Criteria, andData Extraction

The search was conducted in the PubMed, ClinicalTrials.gov, Clinicaltrialsregister.eu, International

Clinical Trials Registry Platform and CENTRAL databases for reports published between January 1,

Table 2. Genetic Polymorphism–Based Categorization of Participants Into Control Group and GroupsWith Potentially AlteredMetabolism

Gene Variant haplotypes Control group Group with potentially altered metabolism (variant)

CYP2C9 Decreased activity: CYP2C9*2: rs1799853;
Abolished activity: CYP2C9*3: rs1057910

CYP2C9 norm/norm Intermediate metabolizers: norm/decreased, decreased/
decreased, and norm/null; poor metabolizers: decreased/
null and null/null

CYP2C19 Abolished activity: CYP2C19*2: rs1799853 or
CYP2C19*3: rs1057910

CYP2C19 norm/norm Intermediate metabolizers: norm/null; poor metabolizers:
null/null

UGT1A6 UGT1A6*2: rs6759892, rs2070959, or
rs1105879

UGT1A6*2 noncarriers UGT1A6*2 hemizygotes; UGT1A6*2 homozygotes

UGT2B7 UGT2B7*2: rs7439366 or; rs7668258 UGT2B7*2 noncarriers UGT2B7*2 hemizygotes; UGT2B7*2 homozygotes

UGT2A7*3: rs12233719 UGT2B7*3 noncarriers UGT2B7*3 hemizygotes; UGT2B7*3 homozygotes

UGT1A4 UGT1A4*3: rs2011425 UGT1A4*3 noncarriers UGT1A4*3 hemizygotes or homozygotes

CYP3A5 CYP3A5*3: rs776746 CYP3A5*3 noncarriers and CYP3A5*3

hemizygotes
CYP3A5*3 homozygotes

EPHX1 rs1051740 rs1051740 noncarriers hemizygotes; homozygotes

rs2234922 rs2234922 noncarriers hemizygotes; homozygotes

Abbreviations: decreased, allele associatedwith the activity substantially lower than that

seen in carriers of norm alleles; norm, allele associatedwith usual enzyme activity as seen

in the carriers of the wildtype genotype; null, loss-of-function alleles associated with

nonexistent or very low activity of the given enzyme.
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1990, and September 30, 2023. A separate literature search was conducted for each drug, and the

search terms are listed in eAppendix 1 in Supplement 1. The references of the included trials and

prominent reviews weremanually searched. Studies lacking plasma concentrations of drugs were

excluded at the first screening; only studies that presented the sum of free and protein-bound drug

fractions were included, and the remaining studies were considered for inclusion if they met the

following criteria: the gene of interest was genotyped for all of its known functional variants with a

minor allele frequency greater than 1%, participants were appropriately assigned to metabolizer

categories based on genotyping or the authors presented drug plasma concentration data for

individual genotypes in a manner that reclassification into categories was possible, the study

included at least 3 participants per experimental group, and plasma concentrations of the drug were

presented as dose-normalized plasma concentrations or dose-normalized area under the plasma

concentration-time curve after single or multiple dosing, provided that the dose and time between

drug intake and plasma concentrationmeasurement were standardized.

Screening and selection of studies were performed independently by 2 investigators (M.M. and

L.M.). The decision on inclusion in the analysis was made by consensus with a third investigator

(F.M.), with final review by consensus between 2 investigators (F.M. andM.M.J.). Risk of bias (ROB)

was assessed in 6 domains using the standardized Risk Of Bias In Non-Randomised Studies of

Interventions tool for nonrandomized studies,26 and studies with critical ROB grade were excluded.

There were no restrictions on study design, participant characteristics (eg, race and ethnicity, sex,

age, patients in treatment vs healthy volunteers, smoking status, treatment duration, drug

interactions), published vs unpublished studies, or language. Studies written in languages other than

English were translated by unbiased researchers whowere native speakers of respective languages.

For carbamazepine, plasma concentration was presented as active moiety, ie, the sum of plasma

concentrations of carbamazepine and its active metabolite carbamazepine-10,11-epoxide. Where

available, the means and SDs for the available parameter for the plasma concentration of the drug

and the number of patients per genotype-definedmetabolizer subgroup were taken directly from

the report. Otherwise, established procedures for data transformation or graph extraction were

performed.27 If this was not possible, the authors were contacted to provide the required data, as

described in eTable 1 in Supplement 1.

Statistical Data Analyses

The effect size was quantified as the ratio of means (ROM), ie, the mean drug plasma concentrations

of the variant group divided by themean drug plasma concentrations of the control group.28 The

standardmean differences (Hedges g) were also calculated. Between-study heterogeneity was

assessed using the Cochran Q test (threshold P < .10), while the percentage of total variability

attributable to heterogeneity was quantified by the I2 value. Due to the expected heterogeneity

between studies, the weighted ROM between groups was used to calculate the pooling effect

between studies using a random-effects meta-analysis model.

Small-study effects and potential publication bias were assessed using the Egger test29 and

contour-enhanced funnel plot asymmetry.30 P < .10 was considered significant, and the funnel plots

are presented in eFigures 27 through 30 in Supplement 1. Statistical analyseswere performed using

RevMan software, version 5.4 (Cochrane). ROMs for each study were calculated using Excel 2016

(Microsoft) according to the previously published formula13,28 and then entered into the RevMan

software using the generic inverse variance option. Two-sided α < .05 was interpreted as a

statistically significant difference. The effects of race and ethnicity, age, study design, and degree of

ROB on the results of the meta-analysis and the overall robustness of the results are investigated in

detail in sensitivity analyses that were performed by comparing original analysis and the alternative

analysis or by comparing 2 alternative analyses where appropriate, with the test of subgroup

differences function in RevMan 5.4. The sensitivity analyses of populations of different racial ethnic

backgrounds and the sensitivity analysis of studies with different risk-of-bias grades were

prespecified, while other sensitivity analyses were performed post-hoc. Race and ethnicity were
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presented as reported in the original studies. For the purpose of sensitivity analysis, we used 3

categories: White (if a study reported the cohort as being predominantly Caucasian, European, or

White); East Asian (if a study reported the cohort as being predominantly Chinese, Japanese, Korean,

or Taiwanese); South Asian (if a study reported the cohort as being predominantly Bangladeshi,

Indian, or Sri Lankan). Due to scarcity of studies, all other races and ethnicities were presented as a

separate category in the sensitivity analysis.

Interpretation of Clinical Relevance of Pharmacogenetic Associations

The quantitative cutoff for clinical relevance was based on the US Food and Drug Administration

bioequivalence cutoffs (ROM: 0.80-1.25),31 ie, if the entire 95% CI for the difference in drug plasma

concentration between variant and control group wasmore than 1.25-fold or less than 0.8-fold, such

an effect was considered clinically relevant. Statistically significant results not fulfilling this criterion

or showing poor robustness in the sensitivity test were considered ambiguous regarding their clinical

relevance. Statistically significant results with their 95% CIs completely within the 0.8 to 1.25 ROM

range were considered to be of minor clinical relevance.

Results

Of the 1736 references initially reviewed, 98 unique studies22,32-128with 12 543 unique participants

met the inclusion criteria. A summary of the screening results and the reasons for exclusion are

shown in Figure 1, while the flow diagrams for the individual drugs and the detailed lists of included

studies can be found in eFigures 1 to 4 in Supplement 1. Most of the included studies were

prospectively conducted in neurological patients who had taken multiple doses of medication and

reached steady state. Of 98 included studies, 12 studies34,38,48,57,63,64,77,80,103,104,120,121 had a

retrospective design, and 6 studies32,33,45,50,52,90 included healthy volunteers who had taken a single

dose ofmedication under standardized conditions. The included studiesweremainly conductedwith

East Asian (69 studies) andWhite or European (15 studies) cohorts, while the age of the included

participants varied considerably in the available studies; the demographic cohort characteristics and

study design of the included studies are detailed in eTables 2 through 9 in Supplement 1. ROB analysis

revealed that 45 studies hadmoderate ROB and 45 studies[ref numbers] had serious ROB, while 9

Figure 1. Flowchart of Systematic Review
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studies had insufficient data to assess ROB. No study received a low ROB rating; even the studies

with a very robust design received amoderate ROB rating because all included studies were

naturalistic and therefore it was not possible to completely eliminate the risk of confounding. Besides

confounding, the most common issues that led to a disadvantageous ROB rating were inconsistent

drug concentrationmeasuring times, and reporting data for only a subset of the tested cohort.

Sufficient data were available to meaningfully quantify the difference in phenytoin plasma

concentrations between the different CYP2C9 and CYP2C19metabolizer phenotypes. The CYP2C9

intermediate metabolizers had 46% (95% CI, 33%-61%) higher phenytoin plasma concentrations

compared with the CYP2C9 normal metabolizers (Figure 2 and Table 3). Insufficient data were

available for a meaningful analysis of the association between the very rare CYP2C9 poor

metabolizers phenotype and differences in phenytoin plasma concentrations. However, the only

study suitable for inclusion, which included 5 CYP2C9 poor metabolizers and 41 CYP2C9 normal

metabolizers, showed a very profound increase in phenytoin plasma concentration of 134% in poor

metabolizers compared with normal metabolizers.129We observed 23% (95% CI, 17%-30%) higher

phenytoin plasma concentration in CYP2C19 intermediate metabolizers and 39% (95% CI,

24%-56%) higher phenytoin plasma concentration in CYP2C19 poor (Table 3). Funnel plots and

sensitivity analyses considering only large studies, only studies with adults, studies with different

ROB grades, studies with different designs and other variables show a high robustness of the

observed differences in phenytoin plasma concentrations (eFigure 27 and eTables 14-16 in

Supplement 1). A significant asymmetry was only observed in the funnel plot with respect to the

comparison of CYP2C9 intermediate metabolizers and normal metabolizers, suggesting that the

results may even be slightly underestimated. In summary, genotypic variants encoding slow CYP2C9

and CYP2C19metabolismwere associated with statistically significant and clinically relevant

increases in phenytoin plasma concentrations.

Sufficient data were available to quantify the difference in valproate plasma concentrations

between CYP2C9 and CYP2C19metabolizer phenotypes and between UGT1A6 (OMIM: 606431) and

Figure 2. Clinically Relevant Association Between CYP2C9Genotype and Phenytoin Plasma Concentration
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UGT2B7 (OMIM: 600068) genotype-defined subgroups, while insufficient data were available for

meaningful analyses of valproate plasma concentrations in relation to UGT1A4 (OMIM: 606429),

UGT1A8 (OMIM: 606433), UGT1A9 (OMIM: 606434), UGT1A10 (OMIM: 606435), UGT2B15 (OMIM:

600069), CYP2B6 (OMIM: 123930), and CYP2A6 (OMIM: 122720) genotypes. Compared with the

respective normal metabolizers, we observed increased valproate plasma concentrations in CYP2C9

intermediatemetabolizers (12% [95%CI, 4%-20%]), CYP2C19 intermediatemetabolizers (12% [95%

CI, 2%-24%]) and CYP2C19 poor metabolizers (20% [95% CI, 2%-41%]) (Table 3). Compared with

homozygous carriers of the major UGT1A6 allele, heterozygous carriers of the UGT1A6*2 allele

exhibited a 9% (95% CI, 3%-15%) reduction in valproate plasma concentrations, while the reduction

in homozygousUGT1A6*2 carriers did not reach statistical significance (Table 3). Comparedwith the

homozygous carriers of UGT2B7wild-type haplotype, valproate plasma concentrations did not differ

significantly in heterozygous or homozygous carriers of UGT2B7*2 haplotype or in heterozygous or

homozygous carriers of UGT2B7*3 haplotype (Table 3). Funnel plots suggested no publication bias

related to the observed statistically significant differences; however, sensitivity analyses suggest

questionable robustness of the associations. Altogether, the associations of valproate plasma

concentrations with CYP2C19, CYP2C9, UGT1A6, and UGT2B7 genotypic variants were either absent

or minor.

Sufficient data were available to quantify the difference in lamotrigine plasma concentrations

betweenUGT1A4 andUGT2B7 genotype-defined subgroups, while insufficient datawere available for

a meaningful analyses of lamotrigine plasma concentrations in relation to CYP2A6 and CYP2D6

genotypes. Lamotrigine plasma concentrations were not significantly different heterozygous or

homozygous carriers of UGT2B7*2 haplotypes or in heterozygous carriers of UGT1A4*3 compared

Table 3. Quantification of Associations of Genetic Polymorphism in Genes Encoding DrugMetabolizing EnzymesWith Antiseizure Drug Plasma Concentration

Meta-analysis Trials, No.

Participants, No.

ROM (95% CI) P value I
2, %Control Variant

Phenytoin

CYP2C9 IMs vs control 20 1863 409 1.46 (1.33-1.61) <.001 79

CYP2C19 IMs vs control 12 508 607 1.23 (1.17-1.30) <.001 0

CYP2C19 PMs vs control 8 359 162 1.39 (1.24-1.56) <.001 48

Valproic acid

CYP2C9 IMs vs control 15 1960 327 1.12 (1.04-1.20) .003 59

CYP2C19 IMs vs control 12 768 826 1.12 (1.02-1.24) .02 83

CYP2C19 PMs vs control 12 768 236 1.20 (1.02-1.41) .03 89

UGT1A6*2 He vs noncarriers 25 1639 1200 0.91 (0.85-0.97) .004 84

UGT1A6*2 Ho vs noncarriers 24 1570 220 0.90 (0.80-1.02) .11 71

UGT2B7*2 He vs noncarriers 23 1216 1291 0.99 (0.91-1.06) .72 75

UGT2B7*2 Ho vs noncarriers 22 1142 365 1.01 (0.92-1.11) .84 66

UGT2B7*3 He vs noncarriers 13 1360 506 0.97 (0.93-1.01) .19 0

UGT2B7*3 Ho vs noncarriers 7 937 47 0.81 (0.62-1.08) .15 70

Lamotrigine

UGT1A4*3 He or Ho vs noncarriers 12 1654 499 0.99 (0.82-1.20) .95 92

UGT2B7*2 He vs noncarriers 7 390 569 1.03 (0.96-1.11) .36 10

UGT2B7*2 Ho vs noncarriers 5 311 199 1.09 (0.90-1.32) .36 64

Carbamazepine

CYP3A5 PMs vs non-PMs 13 572 580 1.12 (1.03-1.22) .007 66

EPHX1 337C He vs noncarriers 7 372 497 0.91 (0.78-1.06) .23 83

EPHX1 337C Ho vs noncarriers 7 372 202 0.93 (0.67-1.29) .66 95

EPHX1 416G He vs noncarriers 5 590 176 1.03 (0.92-1.15) .65 54

UGT2B7*2 He vs noncarriers 5 318 272 0.95 (0.86-1.05) .34 46

Abbreviations: He, hemizygous carrier; Ho, homozygous carrier; IM, intermediate metabolizer; PM, poor metabolizer; ROM, ratio of means.
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with noncarriers of the respective alleles (Table 3). Altogether, the UGT1A4 and UGT2B7 genotypes

are not associated with significant differences in lamotrigine plasma concentrations.

Regarding carbamazepine, sufficient data were available to quantify the difference in plasma

concentrations between the CYP3A5metabolizer phenotypes and between the phenotypes defined

by the EPHX1 (OMIM: 132810) and UGT2B7 genotypes, while there were not enough data regarding

CYP3A4 or CYP2B6 genotypes. CYP3A5 poormetabolizers exhibited a 12% (95%CI, 3%-22%) plasma

concentration increase comparedwith carriers of functional CYP3A5 haplotypes (Table 3). Compared

with respective control groups, carbamazepine plasma concentrations were not significantly

different in heterozygous UGT2B7*2 carriers, heterozygous EPHX1 rs2234922 carriers, heterozygous

EPHX1 rs1051740 carriers, or homozygous EPHX1 rs1051740 carriers (Table 3). In summary,

carbamazepine plasma concentration was subtly increased among CYP3A5 poor metabolizers and

there were no associations with EPHX1 and UGT2B7 genotypes. Standard mean differences for all

results are presnted in eFigures 31 through 52 in Supplement 1

Discussion

This systematic review andmeta-analysis comprehensively quantified themagnitudes of

pharmacokinetic drug-gene interactions related to phenytoin, lamotrigine, valproic acid, and

carbamazepine. The interindividual variability of plasma concentration of antiseizure drugs poses a

challenge for dose personalization. Therapeutic drug monitoring (TDM) is commonly used for dose

titration, which is of particular importance when the therapeutic window of plasma concentration is

narrow.While TDM directly measures the plasma concentration of the drug and incorporates all

sources of variability in drug exposure, TDM testing only becomes applicable when the drug level

reaches a steady state.130 Therefore, preemptive genotyping has the potential to assist clinicians to

choose the initial dose with the best likelihood of achieving therapeutic blood concentration before

TDM data are available. This could provide immense clinical benefits, as the rapid control of

symptoms and the avoidance of unnecessary adverse drug reactions facilitates patient belief in and

adherence to treatment.

Phenytoin has a narrow therapeutic concentration window and is still widely used worldwide

for the treatment of epilepsy, with a market share of 9% in the US131 and 5% in Japan.132 Genetically

determined CYP2C9 poor and intermediate metabolizer phenotypes are listed by the US Food and

Drug Administration (FDA) as clinically relevant polymorphisms for treatment with phenytoin,133

while the FDA drug label advises caution for CYP2C19 and CYP2C9 poor and intermediate

metabolizers.134However, there is limited information on themagnitude of plasma concentration

increases in the different CYP phenotypes, on guidelines for the dose optimization of CYP2C9 and

CYP2C19 intermediate and poor metabolizers, and on the utility of preemptive CYP2C9 and CYP2C19

genotyping. Our results suggest that the increase in phenytoin plasma levels in patients carrying

multiple CYP2C19 and CYP2C9 deleterious alleles may be up to 2-fold compared with noncarriers of

these alleles. Preventive CYP2C9 and CYP2C19 genotyping may therefore hold the potential to

improve the safety of phenytoin treatment, as incoordination, confusion, andmotor dysfunction are

highly dependent on phenytoin plasma concentrations.135Moreover, even idiosyncratic adverse

effects, such as Stevens-Johnson syndrome, appear to be related to CYP2C9 genotype, phenytoin

dose, and plasma concentration.136,137 Feasibility and cost-effectiveness analyses of preemptive

genotyping in phenytoin pharmacotherapy are needed to appropriately evaluate the clinical utility of

such an intervention.

Statistically significant associations were also observed for valproate plasma concentration and

CYP2C9, CYP2C19, andUGT1A6 genotypes and for carbamazepine plasma concentration and CYP3A5

genotype. However, these drug-gene interactions were marginal and not sufficient to justify their

inclusion in official recommendations or drug labeling. In addition, numerous other polymorphisms

annotated in the literature18,63 and in FDA drug labels for valproate138, lamotrigine139 and

carbamazepine140 as potentially relevant to drugmetabolism did not show statistically significant
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associations with changes in plasma concentrations of the respective drugs. Given the extensive

number of studies and participants included in our meta-analysis, it can be assumed that additional

studies specifically targeting these associations are not necessary.

Limitations

This study has some limitations. Themain limitation is the possible presence of confounding factors

arising from the nature of the studies included in the meta-analysis, which were mainly

nonrandomized, open-label, observational studies conducted in a naturalistic setting. Therefore,

factors known to influence drugmetabolism, such as anthropometric parameters, liver function,

kidney function, drug-drug interactions, andmetabolism autoinduction or inhibition, could not be

fully controlled. Consequently, high I2 values indicated that the heterogeneity between individual

study results was substantial, the ROBwas substantial in more than half of the included studies, and

asymmetry of the funnel plot was sometimes observed, suggesting that the small studies may be

biased. However, given the sample size, it is unlikely that any of these circumstances would lead to

substantial changes in the effect size of the meta-analyses and subsequent systematic

misinterpretation of the results. Next, this analysis included only the total plasma level

concentration, a parameter that can be affected by conditions that influence protein binding of the

drug, such as hypoalbuminemia and uremia, which is important for treatment with phenytoin and

valproate.141

Importantly, poor CYP2C9metabolizer status likely has a very profound effect on plasma

concentrations of phenytoin and valproate,129,142,143 but due to the low frequency of this

phenotype,21 the available data were insufficient for meaningful analysis. Furthermore, since most of

the studies, especially for valproic acid, are from East Asian cohorts, the generalizability of the

obtained results to patients in other areas may be questionable.

Conclusions

This systematic review andmeta-analyses quantifies the associations of CYP2C9 and CYP2C19

genotypes and the elevation of phenytoin plasma concentrations, whichmay serve as a scientific

basis for establishing genotype-guided dosing recommendations and indicate the potential need for

preemptive CYP2C9 and CYP2C19 genotyping in phenytoin treatment. On the contrary, although

certain pharmacogenetic polymorphisms previously associated with themetabolism of lamotrigine,

valproate, and carbamazepine may retain academic relevance as, for example, components for

advanced dosing algorithms, their stand-alone clinical relevance is likely marginal.
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eFigure 49. SMDMeta-Analyses: Carbamazepine Active Moiety C/D in EPHX1 337CC and 337TT Carriers

eFigure 50. SMDMeta-Analyses: Carbamazepine Active Moiety C/D in EPHX1 416AA and 416AG Carriers

eFigure 51. SMDMeta-Analyses: Carbamazepine Active Moiety C/D in UGT2B7*2Heterozygous Carriers and *2

Noncarriers

eFigure 52. SMDMeta-Analyses: Carbamazepine Active Moiety C/D in UGT2B7*2Homozygous Carriers and *2

Noncarriers

SUPPLEMENT 2.

Data Sharing Statement
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